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Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more
than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant.
As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across
the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our
understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow
translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection
sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches,
including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators,
currently being studied and reiterate the importance of translational research in the development of various strategies to contain
COVID-19.
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Graphical Abstract

Summarizing the challenges, therapeutic and preventive approaches with translational strategies to contain COVID-19.
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INTRODUCTION
The coronavirus disease 2019 (COVID-19), first discovered in
Wuhan, China in December 2019, spread rapidly throughout the
world resulting in the first pandemic of the twenty-first century,
drawing parallels to the 1918 Spanish flu pandemic [1]. COVID-19
is caused by the severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [2]. As of 27 January 2023, 752 million cases and
6.8 million deaths worldwide have been reported [3]. A significant
number of resources were deployed against COVID-19 to limit
its spread, including mitigation techniques such as face mask
mandates, social distancing and lockdowns, as well as research
into the biology and pathogenesis of SARS-CoV-2 in order to
develop therapeutics to treat clinical complications such as lung
injuries, cytokine storm syndrome (CSS), thrombosis, strokes and
neurological complications to reduce mortality [4].

Moreover, long COVID or post-acute sequelae of COVID-19 has
been a concerning issue and presents as a major complication,
due to its broad range of symptoms, often severe and multi-
systemic in nature, and SARS-CoV-2 infection persistence for
months, which usually does not resolve. Due to a large number of
undocumented cases and a lack of awareness about the condition,
the number of long COVID patients is probably much higher than
reported [5]. An online survey conducted across COVID-19 support
groups and social media over a period of 3 months discovered that

post-COVID symptoms persisted for more than 6 months and the
time to recovery exceeded 35 weeks [6].

The role of translational research has been instrumental in
COVID-19 mitigation efforts, yet there is still a lack of novel
diagnostic and therapeutic options. Immunocompromised indi-
viduals and people with comorbidities remain at high risk of
severe complications from the infection. In addition, the rapidly
evolving nature of the virus makes existing treatment options,
such as antivirals and monoclonal antibodies (mABs), ineffective,
especially against emerging Omicron sub-lineages gaining resis-
tance to most mABs [7]. Thus, ‘translating’ our understanding of
disease mechanisms and other aspects of biology gained through
basic science into functional methods in clinical settings is the
primary goal of translational research. Analysis and interpreta-
tion of various kinds of data gained through computational and
experimental techniques need to be shared between basic science
researchers and clinicians. Observations gained from hospital
settings about disease etiology and progression can drive basic
science research and result in potential therapeutics or strategies
that can be communicated to clinicians for the next stage of
clinical testing.

The success of translational research in the ongoing pan-
demic can be gaged by the development of various types
of vaccines, including the first-ever mRNA vaccines against
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Figure 1: Distribution of various SARS-CoV-2 variants in India. It displays emerging variants gaining dominance in the local population, with XBB.1.16
being responsible for the spring 2023 wave in India.

COVID-19 in record time [8]. Nevertheless, high-quality preclinical
and translational studies on COVID-19 can further help to
elucidate the mechanisms of infection and reinfection by evolving
variants, as well as therapeutic interventions that might benefit
acute manifestations and long-term COVID-19 complications. In
this review, we provide an overview of the current challenges
hindering translational research efforts in the present global
COVID-19 scenario. We also highlight how translational research
has augmented medications and therapeutics during the
pandemic crisis, as well as how it can be maneuvered to maximize
its benefits.

NAVIGATING THE GLOBAL LANDSCAPE:
UNDERSTANDING CURRENT REALITIES
AND OVERCOMING GLOBAL CHALLENGES
After 2 years of rigorous mitigation efforts in combating the
COVID-19 pandemic, it seems the majority of governments
around the world have considered it to be over with countries
scaling back heavily on testing and genome sequencing [9] or
scrapping it entirely [10]. The reality, however, is different as
newer, fitter variants are emerging consistently, fighting for
dominance and causing seasonal waves (Figure 1) [11]. The
narrative across the West continues to be that we have to ‘live
with the virus’ [12–14] or that it will ‘evolve to become like
the common cold’ [15–17]. Though SARS-CoV-2 testing has been
practically abandoned [18] and genome surveillance rates remain
low, the most recent EG.5 variant has caused a global rise in cases
and hospitalizations in several countries, especially high-income
countries (HICs) (Figure 2) [19].

Although case numbers have decreased drastically since the
peak of the pandemic, SARS-CoV-2 reinfection is still a cause
for concern with healthcare workers (HCWs) at the highest risk.
Reinfection rates among HCWs have been highest since the intro-
duction of the Omicron variant, with Guedes et al. [21] reporting a
reinfection rate of 0.8% before Omicron and 4.3% after Omicron.
Similarly, reinfection rates across continents varied widely with

America, Asia and Europe reporting reinfection rates at 1.08, 0.77
and 0.63%, respectively [22]. In addition, individuals with one
or more reinfections exhibited a higher risk of hospitalization
and all-cause mortality, by 3.32 and 2.17 times, respectively [23].
Comparative analyses against control revealed the risk of damage
to organ systems and development of comorbidities displayed
direct correlation with the number of reinfections in both acute
and post-acute phases. The cumulative risk of developing at least
one sequela increases by 2.10 times after the first reinfection and
continues to increase as the number of reinfections increases. The
risks were present in all individuals, regardless of their vaccina-
tion status, therefore making public health mitigation efforts all
the more important to prevent reinfections [23].

SARS-CoV-2 infection rates in children and adolescents have
also been high, with infections and hospitalizations surging and
vaccination rates low [24]. As of January 2023, 15.2 million COVID-
19 cases in children have been reported in the United States
alone, with children comprising 18.1% of the total caseload [24].
Globally, confirmed cases in children of ages less than 5 years
and 5–14 years stand at 7.9 million and 32.1 million, respectively
[3]. A total of 75 529 children aged 5–17 were infected with
COVID-19 during the span of a year between March 2020 and
February 2021. Of which, 1734 children were symptomatic but
interestingly, the duration of illness was much lower in chil-
dren (6 days) than in adults (11 days) [25]. While the rate of
death in children was low (1.2%), 75% of the deaths occurred in
neurodisabled and immunocompromised individuals [26]. Sim-
ilarly, in China, most of the affected children aged between 2
and 13 were less likely to develop severe symptoms, but young
children, especially infants, were particularly at risk of infec-
tion. Importantly, in an inter-related way, the pandemic has also
affected access of routine immunization protocols in developing
countries, exposing children to infections other than SARS-CoV-2
[27].

Mitigation and vaccination efforts need to be strengthened in
reducing infection rates so that serious complications such as
long COVID or multisystem inflammatory syndrome in children
(MIS-C) can be prevented, especially in children with high-risk
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Figure 2: Cases per million over the past 2 months in countries with different economies as of 30 July 2023 [20].

conditions such as lung disease, neurologic and cardiovascular
disorders [28], as well as those belonging to ethnic and racial
communities, since a disproportionately high number of children
that were infected throughout the pandemic belonged to minor-
ity groups [29–31] as well as higher rates of hospitalization [32,
33] and MIS-C [30, 34]. Vaccination rates in children have also
been low due to vaccine hesitancy and slow implementation,
with children belonging to low-income and lower-middle-income
countries being the most affected [35].

However, health disparities among communities were not
limited to children, with both racial and socioeconomic status
affecting access to quality healthcare. This led to increased
mortality rates among minorities or individuals living in poverty
or in the lower-income bracket [36, 37], highlighting vaccine
inequity as a hovering global issue [38]. The vaccine inequity
has been extremely evident on the international level, with HICs
achieving high vaccination rates as compared to low- and middle-
income countries (LMICs) (Figure 3) [39]. Worldwide vaccine
distribution is controlled by pharmaceutical companies, with the
primary model of vaccine acquisition being through financial
competition, resulting in HICs having access and, in some cases,
leading to vaccine wastage [39–41] due to vaccine hoarding
[42].

The consequences of vaccine inequity impacted the whole
world, with it being the major driving cause of new emerging
variants as seen previously with the Omicron variant [43]. The
COVID-19 Vaccines Global Access (COVAX) initiative has proved
to be not as effective as previously thought, with an acute imbal-
ance of vaccine distribution worldwide. The Agreement of Trade-
Related Aspects of Intellectual Property Rights (TRIPS) waiver, first
proposed by India and South Africa in October 2020 [44], had
support from majority of the WTO countries but was opposed
by some major HIC members. Relinquishing intellectual property
(IP) rights is the first step toward global equitable vaccine access,
with the goal being to create a collaborative, centralized, global
technology transfer hub.

THE LINGERING IMPACT: UNDERSTANDING
LONG-TERM COVID-19 SYMPTOMS AND
EFFECTS
Long COVID or post-acute sequelae of COVID-19 remains a chal-
lenge, as the number of cases seems to be increasing. There is
a great diversity of symptoms, some debilitating, that greatly
affect quality of life, as it involves multiple organ systems [45].
The number of long COVID patients is conservatively estimated
to be about 10% of all the SARS-CoV-2 infections, bringing the
number to around 65 million globally [45]. The real number, in
all probability, is a lot higher due to undocumented cases. Long
COVID manifested most in patients who displayed mild COVID-
19 symptoms and did not require hospitalization, with most cases
being between the ages of 36 and 50 [46]. Long COVID patients
suffer from an extensive range of symptoms across a wide range
of organ systems, with hundreds of biomedical findings. Cognitive
(brain fog, poor attention span, difficulty thinking), musculoskele-
tal (tightness of chest, muscle aches), pulmonary (shortness of
breath, dry cough), cardiovascular (palpitations, tachycardia) and
systemic (fatigue, post-exertional malaise) symptoms were the
most prevalent, experienced by greater than 60% individuals who
participated in a survey [6]. Furthermore, post-infection follow-
up in symptomatic patients at 6, 12 and 18 months revealed that
almost half of the group reported incomplete or no recovery, with
cardiovascular symptoms such as breathlessness, palpitations
and chest pain being most prominent, and an overall decreased
quality of life [47]. Sleep issues and mental health disorders
such as depression and anxiety have also been reported [48,
49]. In many cases, serious disorders such as type 2 diabetes
[50], dysautonomia [51] and myalgic encephalomyelitis/chronic
fatigue syndrome [52, 53] have been chronicled, resulting in dis-
ability [6, 54] and has been cited as a major cause of labor
shortage in the United States [55, 56]. Similarly, daily wage migrant
workers in countries like India and China were affected the most
from the pandemic since their daily income was terminated due
to nationwide lockdowns with no safety net to support them,

D
ow

nloaded from
 https://academ

ic.oup.com
/bfg/advance-article/doi/10.1093/bfgp/elad051/7434429 by guest on 22 N

ovem
ber 2023



Shukla et al. | 5

Figure 3: Line plot of fully vaccinated (two doses) populations per 100 people in differing economies as of 30 August 2023. Upper-middle-income
countries have the highest vaccination rates, with vaccination rates in LMICs increasing since mid-2021 and low-income countries rising steadily since
2022 yet remains low [20].

causing severe economic and mental strain [57]. The Americans
with Disabilities Act formally recognized long COVID as a disabil-
ity in July 2021 [58] and in the UK [59]. No effective treatments
currently exist to treat long COVID.

Multiple causes of long COVID have been hypothesized, with
prolonged release of immune and inflammatory factors being
one of the major causes driving its progression [58]. Ortelli et al.
[60] observed a hyper-inflammatory state, characterized by high
levels of C-reactive protein (CRP) and interleukin-6 (IL-6) levels
during the acute infection phase in COVID-19 patients suffering
from fatigue and neurological complications post-infection in
12 patients. Klein and colleagues reported high number of non-
conventional monocytes as well as higher absolute counts of
double-negative B cells in long COVID patients. Other immune
markers such as CD4 T cells, contributing to increased levels of
inflammatory markers IL-4/IL-6, were increased and dendritic
cells DC1 and central-memory CD4 T cells were decreased [61].
Prolonged viral reservoirs post-infection [62] with neuroinvasive
and neurotrophic potential of SARS-CoV-2 have been recorded [63,
64] in human and mice studies. Host immune system dysregu-
lation has been conspicuous in COVID-19 [65, 66] and has been
conjectured to play some role in long COVID [62], with activation
of some dormant pathogens such as Herpesviruses or Toxoplasma
also observed [62] which may or not play an additional role in
immune system dysregulation.

Long COVID also affects children of all ages and, due to testing
issues and lack of research, are harder to diagnose. Studies have
ascertained that certain groups are more prone to severe com-
plications, such as obesity, neurologic comorbidities, congenital
disorders and pulmonary disease, among others. COVID-19 in
children and adolescents has been of particular concern and
cases have been steadily rising since the pandemic began due

to reduced vigilance in preventing infections. A Schools Infection
Survey by the UK Office for National Statistics reported that 82%
of primary school and 99% of secondary school students had
SARS-CoV-2 antibody levels higher than threshold levels and only
6% of the children aged 5–11 years had received at least one dose
of the COVID-19 vaccine [67]. Similarly, another survey by the UK
Office for National Statistics reported 7.9 and 6.2% of children
suffered from at least one symptom 4–8 weeks and 12–16 weeks
post-infection, respectively [68]. Similarly, in Italy, a study con-
sisting of 129 children < 18 years reported the prevalence of long
COVID in 58.2% patients. Also, 35.7% of the patients suffered
from at least one to two symptoms while 22.5% had three or
more [69]. The most common symptoms reported were insomnia
and respiratory symptoms such as chest pain and tightness [69].
Studies from various other countries have also reported long
COVID though evidence is largely heterogenous and one of the
barriers in prediction of progression to long COVID is difficult to
make [58].

Mitigation techniques are not being followed or have been
abandoned altogether, with poor ventilation at schools and day-
care centers further contributing to the spread of infection among
children [70–72].

Multisystem inflammatory syndrome in children has been
the most common cause of intensive care unit admissions. A
systematic review reported gastrointestinal, dermatologic and
cardiovascular manifestations as well as elevated levels of CRP,
IL-6 and fibrinogens in 75% of the patients [73]. Long COVID,
however, remains a more prominent complication with long-
term consequences and severely affecting the quality of life.
In a survey in children aged 0–14 years in Denmark, the most
common symptoms reported across all age groups 2 months
post-infection were mood swings, rashes and troubles with
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concentration and memory [74]. Symptoms observed in adults
such as fatigue, post-exertional malaise, memory loss and
headaches were also observed in children [74]. Liver injury has
also been recorded, with two infants presenting with acute liver
failure [75]. Besides this, brain hypometabolism, similar to that
in adult long COVID patients [76], and long-term pulmonary
dysfunction [77] have also been reported in children with long
COVID.

OVERCOMING OBSTACLES: ENHANCING
THE EFFECTIVENESS OF SURVEILLANCE
SYSTEMS
RNA viruses possess the maximum pandemic potential [78, 79]
due to their compact genome structure and high mutation rates.
In order to prevent future pandemics, effective surveillance needs
to be established [79, 80] for the various viruses that could pose
a threat in the coming times. This would enhance controlling
their spread in case zoonotic emergence is detected and aid
in pandemic preparedness. Similarly, the surveillance for SARS-
CoV-2 needs to be robust and consistent due to the continuous
evolution of the virus, with a rate of two mutations per month
being observed [81], resulting in the virus constantly improving its
ability to evade immunity and transmissibility, leading to a higher
risk of infections [82]. For example, the basic reproduction number
(R0) of the Delta variant has been reported to be between 3.2 and 8
[83], with Omicron being ∼3.2 times higher [84]. Genomic surveil-
lance allows researchers to track the circulating variants in a
population as well as detect polymorphisms that occur frequently,
allowing rapid characterization of infectivity, transmissibility and
severity [69].

Dedicated data sharing has been critical to accelerating COVID-
19 research, increasing the visibility of data and information and
allowing researchers and clinicians to react quickly to the rapidly
changing behavior of the SARS-CoV-2 virus. The Global Initiative
on Sharing Avian Influenza Data (GISAID) initiative has been
crucial during the peak of the pandemic, allowing researchers
across the world access to high-quality, curated data [85]. As of
August 2023, 15.9 million SARS-CoV-2 genome sequences have
been submitted to GISAID. Similarly, platforms like EMBL’s COVID-
19 Data Portal [86] and NCBI SARS-CoV-2 Resources (https://www.
ncbi.nlm.nih.gov/sars-cov-2/) also provided open access informa-
tion to researchers, with access to various types of data, ranging
from gene sequences to literature. Nextstrain [87] allowed for near
real-time tracking of viral evolution through the integration of
data collected from various sources, their analysis and visual-
ization. Despite this, open-data sharing remains limited due to
research organizations being skeptical of giving up control of data
due to privacy concerns, publication priorities or IP ownership
and exclusivity. Thus, a centralized, open-data sharing system is
required with methods in place to incentivize open-data sharing
and changing success metrics during a global pandemic to prompt
open-data sharing.

Another shortcoming to translational research during the pan-
demic to quickly discover potential treatment options was the
lack of resources and infrastructure, especially in LMICs and LICs.
High-containment facilities and animal testing facilities in partic-
ular were lacking [88]. The establishment of these facilities would
massively improve preparedness in translational research and
several countries have built or are committed to building facilities
in order to improve preparedness and conquer the challenges
faced that caused delays in research [89].

ADVANCEMENTS IN MEDICATIONS AND
THERAPEUTICS: INNOVATIONS AND
IMPACT ON HEALTHCARE DRUG
REPURPOSING
The most rapid response to an emerging wave of a new SARS-CoV-
2 variant is repurposing existing, approved drugs. Several drugs
throughout the pandemic have been repurposed for treatment
using therapeutic agents such as chloroquine, hydroxychloro-
quine, remdesivir, ivermectin, azithromycin, dexamethasone as
well as immunotherapeutic agents such as tocilizumab, casiriv-
imab, mavrilimumab, baricitinib and others. A review, which eval-
uated various repurposed drugs and their effectiveness against
COVID-19 in clinical trials, reported that only remdesivir, dexam-
ethasone, tocilizumab and baricitinib displayed significant relief
against COVID-19 [90]. Henceforth, a unified strategy and vali-
dation method for COVID-19 drug repurposing discovery is also
required. Drug toxicity also needs to be taken into consideration
since arrhythmic events have been reported in clinical trials,
particularly in patients with cardiac comorbidities [91, 92], specif-
ically in hydroxychloroquine and chloroquine [93].

Since the virus is constantly evolving, it has developed
resistance to conventional antivirals [94]. New possible options
are urgently needed, and several have been reported, including
adapalene, levocabastine, dihydrotachysterol, bexarotene, amox-
icillin, clavulanate, cysteamine and others, of which apilimod is
currently being tested (NCT04446377) [95–98].

The use of bioinformatic tools and methodologies has been sig-
nificant in drug repurposing as well as drug discovery with AI/ML-
based methods, especially proving to be an effective method. With
the large amount of data being collected and publicly available,
there are sufficient data to analyze and train AI/ML models to
identify both existing and new drug candidates against COVID-
19. A notable example is the use of AI-assisted modeling to
discover baricitinib as a therapeutic agent against COVID-19 [99],
whose clinical effectiveness was later confirmed [100, 101]. Graph
convolution network variations (GCN) have also been utilized
for drug repurposing, with bipartite GCNs for prediction being
proposed, utilizing drug, disease and protein-level information
fusion as features for prediction [102]. In order to effectively
predict drug response in cancer cell lines, Liu et al. [103] developed
a deep-learning model to model drug molecules and predict drug
response, combining it with genomic, transcriptomic and epige-
nomic networks.

REVOLUTIONIZING ANTIVIRAL
TREATMENT: ADVANCES IN NOVEL
ANTIVIRAL DEVELOPMENT
Effective antiviral treatment candidates against COVID-19 have
been far and few. A combination therapy of baricitinib and remde-
sivir has been the only one to display significant pharmaco-
logical benefits [104], though uncertainty remains. The efficacy
of remdesivir, for example, is reduced by the presence of an
exonuclease-based proofreader, which removes the remdesivir
molecules incorporated into the viral RNA during replication
[105]. Despite this, the number of effective antivirals against
COVID-19 remains low and the need for effective candidates is
required as the virus continues to evolve. Wang et al. [104] dis-
covered Hepatitis C virus inhibitors ombitasvir and pibrentasvir
as potential combination therapy through both polymerase and
exonuclease inhibition.
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Recently, a combination therapy of nirmatrelvir and ritonavir,
called Paxlovid, developed by Pfizer was approved by the United
States Food and Drug Administration (US FDA) [106] and later
by the UK [107] and the EU [108]. Alternatively, plant-derived
secondary metabolites such as polyphenols and sesquiterpenes
are considered to possess antiviral properties [109, 110]. The effect
of pomegranate peel extract was investigated in disrupting the
interaction between the human angiotensin-converting enzyme
2 receptor (ACE2) and the SARS-CoV-2 spike glycoprotein, as well
as the activity of 3C-like protease (3CLpro) on human cell lines,
and displayed 51% binding inhibition and 3CL protease inhibition
by 80% at 0.2 mg/ml [111].

Monoclonal antibody and immunomodulator
development
There is also a need for novel mAbs, which have been immensely
successful in treating people with severe COVID-19 complications,
but due to rapidly emerging newer variants with increased fitness,
partial or full resistance against mAbs is expected. The resistance
of emerging Omicron variants (BA.4.6, BA.2.75.2, BJ.1 and BQ.1.1)
against mAbs has been widely reported [112, 113], with BQ.1.1
being resistant against all currently approved mAbs [7]. Two novel
neutralizing antibodies (nAbs), XG81 and XG83, were isolated from
the plasmablast B cells of COVID-19 patients which displayed
effective neutralization of the virus. When compared against nine
other nAbs, XG83 demonstrated higher receptor-binding domain
(RBD) affinity and possessed broad neutralization capability
[114].

Effective broad-spectrum nAbs have been sporadic, with
several promising nAbs currently undergoing preclinical devel-
opment. Most of the discovered antibodies to date target
the RBD [115]. Class 1 nAbs work by preventing binding of
the S protein to the ACE2 receptor. One of the few class
1 nAbs, S2E12, has displayed broad neutralizing potential,
possessing the ability to neutralize all current variants of
concern (VOCs) [116, 117]. Similarly, S2K146 also demonstrated
effective neutralization breadth against SARS-CoV, SARS-CoV-
2 and other sarbecoviruses [118]. Several nAbs such as S309
bind to conserved regions of the virus and confer broad-
spectrum activity which neutralizes Omicron subvariants
BA.1, BA.1.1, BA.2 [119] and LY-CoV1404 (bebtelovimab) which
neutralizes most VOCs and Omicron sublineage BA.2, and
has been granted emergency use authorization by the FDA
[120].

Polyclonal antibodies (pAbs) are also being currently tested
against Omicron variants, with some displaying positive results.
Lusvarghi et al.[121] prepared two pAbs, called anti-COVID-
19 hyperimmune intravenous immunoglobulin (anti-COVID-
19 hIVIG) and immunoglobulin G (IgG) Emergent, displaying
enhanced neutralization efficacy against the D614G mutation
variants but lower activity compared to authorized mAbs which
have since been made redundant due to the evolution of SARS-
CoV-2 virus. Different approaches to improve antibody function
is to develop broad-spectrum nAbs that have the ability to
simultaneously and synergistically bind to multiple epitopes
as well as combining several broad-spectrum nAbs that target
different domains could also be effective. Finally, to make sure
that the nAbs are future-proof, targeting the conserved region of
the virus would assist greatly in both broad-spectrum nAb and
could aid in vaccine development.

The interest in immunomodulatory therapies and their effi-
cacy has been intense due to the delayed onset of life-threatening
symptoms, most commonly CSS. Clinicians have advised early

Figure 4: Number of registered clinical trials related to SARS-CoV-2 on
ClinicalTrials.gov.

intervention and treatment and thus, glucocorticoids have been
used extensively in patients with CSS and respiratory failure
[122]. However, there are still concerns about secondary infec-
tions caused by immunosuppression, a glucocorticoid side effect
and COVID-19 aggravation of lung injury [123]. Therefore, other
immunomodulators such as Janus kinase (JAK) inhibitors, inter-
ferons and cytokine modulators are an option (Table 1). An IL-1
receptor antagonist, Anakinra, has also been considered and a
meta-analysis displayed its efficacy in COVID-19 patients, reduc-
ing the risk for mechanical ventilation and risk of death as well as
the risk of adverse side effects [124]. JAK inhibitors have especially
shown to be effective, with the abovementioned baricitinib being
a potent JAK inhibitor and has shown extensive efficacy against
COVID-19. Heparin has also been used during the pandemic as
an anticoagulant to treat coagulopathy associated with severe
COVID-19 [125] and has displayed evidence to inhibit SARS-CoV-2
[126].

Alternatively, micronutrient supplementation has also been
suggested since micronutrients such as vitamin C, D and zinc
are known to play a role in immunomodulation. Jandaghi and
colleagues evaluated 19 studies on the impact of micronutri-
ent supplementation against COVID-19 and its effectiveness. The
group concluded that high-dose supplementation of vitamin C, D
and zinc may be beneficial in alleviating COVID-19 complications,
such as elevated inflammatory markers, requirement of oxygen
therapy, hospitalization and mortality [132]. However, these are
initial results and further clinical studies are required to identify
effectiveness and safe dosages.

Promising endeavors and future perspectives
Much like with other disorders and diseases, the approaches to
COVID-19 etiology, prevention, diagnostics and treatment have
changed. Advances in biotechnology and computational biology
have enabled us to analyze large amounts of data and develop
technologies based on a deeper, better understanding as well as
create drugs that target specific components of the viral cell,
thereby resulting in fewer adverse effects. As of now, most new
therapeutic technologies are in the preclinical stages of study,
with few in clinical trial stages (Figure 4). Several examples of
promising technologies are described below that translate our
understanding of COVID-19 into the development of therapeutics.

Omics-based studies have expedited the process of identifying
several genes and proteins that played crucial roles in disease
pathogenesis of COVID-19. Besides surveillance, genomics has
additionally helped in determining the effects of SARS-CoV-2
infection on the immune system [81, 133] and the prognosis of
COVID-19. The genetic sequences of more than 14 million B- and
T-cell receptors (BCR and TCR) isolated from COVID-19 patients
were investigated, and discovered that patients affected by serious
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Table 1. List of promising immunomodulatory therapies currently under preclinical development

Name Description Reference

Niclosamide Causes inhibition of inflammasomes and SARS-CoV-2 through
autophagy induction

[127]

Anakinra IL-1 antagonist, particularly effective in hospitalized patients suffering
from acute-respiratory distress syndrome (ARDS)

[124]

Thymosin-α1 Inhibits inflammatory activation of monocytes and myeloid dendritic
cells (mDc) through inactivation of mediators TNF-α, IL-6 and IL-8

[128]

Interferon-α2b Effective immune neutralization in hospitalized patients, decreasing risk
of pneumonia and lung injury, while increasing SpO2 levels. Further
investigation is needed

[129, 130]

Tofacitinib Limits JAK1 and JAK3 enzymes, thus inhibiting the JAK–STAT pathway.
Led to decreased mortality in hospitalized patients in a 28-day
randomized double-blind, randomized clinical trial

[131]

complications requiring oxygen therapy had a higher number
of somatic mutations in BCRs [134]. Similarly, proteomic studies
allowed the integration and analysis of interacting proteins and
thus revealed the underlying pathogenesis of the disease. Pro-
teomic analysis of seven organs from 144 autopsies ascertained
5336 altered proteins when compared to the control. Dysregula-
tion of key factors involved in major processes such as hypoxia,
blood coagulation, fibrosis and angiogenesis were observed in
multiple organs [135].

Comparative transcriptomics revealed robust SARS-CoV-
2 infection in HEK293T cells without triggering an immune
response, instead causing activation of pathways related to
endoplasmic reticulum stress and unfolded protein response,
which may be the cause of major SARS-CoV-2 symptoms such
as metabolic disruption and inflammation [136]. In addition, the
expression of hACE2 had direct correlation to viral load but does
not scale to immune response and only cells with high expression
of ACE2 mounted an immune response [136].

Demichev and colleagues analyzed the plasma proteomes of
139 COVID-19 patients through flow chromatography, tandem
mass spectrometry, sequential window acquisition of all theoreti-
cal fragment ion spectra mass spectrometry and deep-neural net-
work. Eleven proteins and nine clinical parameters were included
in the prediction model of disease progression to identify early
infected individuals and classify them accordingly based on risk
[137], but translation to clinical settings requires additional val-
idation and testing before progression to clinical testing. Typi-
cally, lengthy processes such as studying disease pathogenesis,
identification of small molecules and antibody design have been
shortened through omics-based technologies. Clustered Regula-
tory Interspersed Short Palindromic Repeats (CRISPR)-Cas-based
diagnostics are currently available. They are highly sensitive,
quick and accurate in SARS-CoV-2 detection. These assays are
based on various CRISPR-Cas enzymes such as cas13 (SHER-
LOCK and CREST), cas12a (AIOD-CRISPR, DETECTR, VaNGuard),
cas9 (FELUDA) and cas3 (CONAN) [138–144]. Besides diagnostics,
CRISPR-Cas has also been suggested as a potential therapeu-
tic protocol. The Prophylactic Antiviral CRISPR in Human Cells
system as well as 40 CRISPR RNAs (crRNAs) target conserved
regions in SARS-CoV-2 and cause degradation viral RNA, effec-
tively inhibiting viral replication. The crRNAs reported repression
of signal reporters fused to RdRP and N genes by 86 and 71%,
respectively [145]. Drug delivery for CRISPR-based therapeutic
technologies remains a challenge although there are a variety of
options that should be tested [146].

Due to advancements made in molecular biology, the number
of agents undergoing preclinical testing has increased dramati-
cally from a wide range of technologies. We could not cover all
of them, though we have mentioned a few important ones that
showed potential to become a viable treatment option in the
future (Table 2). Nanotechnology has made a lot of progress in
this regard, with mRNA-liquid nanoparticle-based vaccines cur-
rently being explored [147, 148], and one approved in Moderna’s
vaccine. Antiviral nanomaterials possessing virucidal properties
such as polymer surfactants are also currently being explored.
NanoViricides developed a topical nanoviricide called NV-CoV-
2 that binds to the viral particles, ultimately encapsulating the
virus and dismantling it without any involvement of the immune
system [149]. Similarly, other technologies such as nanodecoys
and the incorporation of nanotechnological methods with tradi-
tional treatment methods are being explored to improve upon
them [150], and there have been some successes, especially in
terms of rapid diagnosis and treatment. Recently, a novel viral
RNA extraction method was developed using poly with carboxyl-
group-coated magnetic nanoparticles, allowing for rapid and sen-
sitive extraction of SARS-CoV-2 in less than 9 min [151]. Another
study developed a lateral flow immunoassay kit by modifying the
SARS-CoV-2 nucleoproteins with selenium nanoparticles (NPs),
allowing swift identification of anti-SARS-CoV-2 antibodies IgG
and IgM, in the human blood in under 10 min [152]. Various
NPs, especially silver (Au) and gold (Ag), are being investigated
as potential antiviral agent. A study observed that AuNPs of 10
nm in diameter with concentrations of 1–10 ppm were effective
in inhibiting extracellular SARS-CoV-2 [153]. Similarly, zinc-oxide
NPs displayed inactivation of both the Delta and Omicron variants
at 20 mg/ml [154].

DISCUSSION AND CONCLUSION
In this review, we discussed various factors currently preventing
the successful alleviation of SARS-CoV-2 infections in the face
of the constant evolution of the virus as well as methods of
treatments currently being pursued. Access to vaccines and, more
importantly, updated boosters across the world and mitigation
techniques against new variants should be the primary goal
of countries to assist in managing the virus, slowing down its
evolution, and reduce death and disability in the population
[169]through mask mandates and limiting mass gathering events
at local levels during seasonal outbreaks. Drug repurposing
remains the fastest method to introduce new treatment options,
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Table 2. A brief summative list of promising therapeutic agents and vaccines currently undergoing clinical trials

Drug name Phase of study Description Country

Antivirals
Proxatulamide [155] Phase III Supportive treatment for COVID-19

patients to prevent complications
Brazil

Interferon β-1b + lopinavir-
ritonavir + ribavirin [156]

Phase II Early therapy to alleviate COVID-19
symptoms and reduce hospitalization
duration

Hong Kong

Aprotinin [157] Phase III Protease inhibitor with anti-inflammatory
properties, beneficial in reducing hospital
stay and use of oxygen therapy

Spain

Sofosbuvir + daclatasvir [158] Phase III Decreased duration of hospitalization with
higher cumulative rate of hospital
discharge compared to control

Iran

Ruxolitinib [159] Phase III Treatment for acute-respiratory distress
syndrome (ARDS) and cytokine storm
syndrome (CSS)

Russia, United States, Brazil, Spain,
Argentina, Peru, Turkey, Mexico,
UK, Colombia, France and Germany

Monoclonal antibodies (mAbs)
Infliximab [160] Phase II Prevention of severe COVID-19

complications through the use of TNF-α
inhibition

United Kingdom

Cilgavimab + tixagevimab [161] Phase III Combination therapy of COVID-19,
reporting 77% reduction of disease
symptoms. Approved for use in the EU

United States, Latin America,
Europe and Japan

Bamlanivimab [162] Phase II Neutralizing antibodies (nAbs) for patients
with mild-to-moderate symptoms, decrease
in viral load observed

United States

Tocilizumab [163] Phase III Reduction of multisystem organ failure and
complications in patients requiring
supplemental oxygen. Granted EUA in the
USA

Greece

Vaccines
Coronavirus-like particles (CoVLP)
adjuvanted vaccine [164]

Phase III Plant-based recombinant vaccine
containing coronavirus-like particles
(CoVLP) combined with an adjuvant

Argentina, Brazil, Canada, Mexico,
United Kingdom and United States

SOBERANA 02 [165] Phase IIb Recombinant protein vaccine conjugated
with a tetanus toxoid

Cuba

Nanocovax [166] Phase II Recombinant protein vaccine consisting of
spike protein from CHO cells using
recombinant DNA technology

Vietnam

iNCOVACC [167] Phase III ChAd36-SARS-CoV-2 spike recombinant
intranasal vaccine

India

ARCT-154 [168] Phase II/III Self-amplifying RNA (saRNA) vaccine
delivered in a lipid nanoparticle (LNP)
encapsulation

United Kingdom

helping clinicians minimize complications and mortality rates
due to the ever-changing nature of the virus. Meanwhile, it
provides time for researchers to develop novel antivirals and
other therapeutics that can be tested thoroughly before approval
for general use to avoid unexpected side effects and minimize
toxicity. Novel antivirals and mAbs remain the best solution
for tackling serious SARS-CoV-2 complications in populations
at risk. While significant progress is being made to understand
the etiology of long COVID and develop a standardized protocol
toward its prognosis, diagnosis and, ultimately, developing
treatment protocols.

Since 2020, the COVID-19 pandemic has perhaps exposed
our shortcomings in terms of preparedness against a potential
pandemic. It has repeatedly challenged policymakers and
public health experts alike and continues to do so. Enhanced
surveillance has ever been so important in containing an outbreak

especially with new variants emerging since it allows better
response time to mobilize mitigation efforts and resources.
Furthermore, countries need to have a robust surveillance system
since RNA respiratory viruses carry the most pandemic potential.
The rapid response from scientists and clinicians allowed for
some breakthroughs, especially with the fastest vaccine develop-
ment and approval in history. An interdisciplinary framework is
required, in order to allow tools in virology, translational medicine,
drug discovery and -omics to flourish and allow for the rapid
development of novel and existing interventions in response,
with constant re-evaluation in the face of a rapidly evolving
virus and changing epidemiological factors. Ultimately, effective
vaccines will determine the fate of a pandemic, so vaccine
equity is a critical goal that the world must achieve. Regardless,
pharmacological therapies will always play an important role in
lowering mortality rates and illness consequences.
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Key Points

• Emergence of SARS-CoV-2 variants displaying increased
fitness and transmissibility challenges the efforts of
translational research in the mitigation of COVID-19.

• Long-term health complications associated with COVID-
19 such as long COVID and MIS-C additionally qualify for
intense research interventions.

• Progress in translational research is currently impacted
due to a lack of resource generation, with worldwide
scaling back on genome surveillance programs, and vac-
cine and drug development.

• The availability of effective treatments options and
newer vaccines is being compromised, exposing the pop-
ulation to the currently circulating variants and increas-
ing the risk of death and disability.

• We outline the advancements in medicine and therapeu-
tic interventions brought about by translational research
in COVID-19 along with new promising approaches
currently under investigation as future perspectives of
translational research in the fight against SARS-CoV-2.
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